This list of Indian inventions and discoveries details the inventions, scientific discoveries and contributions of India, including both the ancient and medieval nations in the subcontinent historically referred to as India and the modern Indian state. It draws from the whole culturaland technological history of India, during which architecture, astronomy, cartography, metallurgy, logic, mathematics, metrology andmineralogy were among the branches of study pursued by its scholars. During recent times science and technology in the Republic of Indiahas also focused on automobile engineering, information technology, communications as well as space, polar.
Discoveries
Agriculture
- Cashmere wool: The fiber is also known as pashm or pashmina for its use in the handmade shawls of Kashmir, India. The woolen shawls made from wool in Kashmir region of India find written mention between 3rd century BCE and the 11th century CE. However, the founder of the cashmere wool industry is traditionally held to be the 15th century ruler of Kashmir, Zayn-ul-Abidin, who employed weavers from Central Asia.
- Cotton, cultivation of: Cotton was cultivated by the inhabitants of the Indus Valley Civilization by the 5th millennium BCE - 4th millennium BCE. The Indus cotton industry was well developed and some methods used in cotton spinning and fabrication continued to be practiced till the modern Industrialization of India. Well before the Common Era, the use of cotton textiles had spread from India to the Mediterranean and beyond.
- Indigo dye: Indigo, a blue pigment and a dye, was used in India, which was also the earliest major center for its production and processing. The Indigofera tinctoria variety of Indigo was domesticated in India. Indigo, used as a dye, made its way to the Greeks and the Romans via various trade routes, and was valued as a luxury product.
- Jute, cultivation of: Jute has been cultivated in India since ancient times. Raw jute was exported to the western world, where it was used to make ropes and cordage. The Indian jute industry, in turn, was modernized during the British Raj in India. The region of Bengal was the major center for Jute cultivation, and remained so before the modernization of India's jute industry in 1855, when Kolkata became a center for jute processing in India.
- Sugar refinement: Sugarcane was originally from tropical South Asia and Southeast Asia.Different species likely originated in different locations with S. barberi originating in India and S. edule and S. officinarum coming from New Guinea. The process of producing crystallized sugar from sugarcane was discovered by the time of the Imperial Guptas, and the earliest reference of candied sugar comes from India. The process was soon transmitted to China with traveling Buddhist monks. Chinese documents confirm at least two missions to India, initiated in 647 CE, for obtaining technology for sugar-refining. Each mission returned with results on refining sugar.
Mathematics
Hindu Number System | ||||||||||
Oriya | ୦ | ୧ | ୨ | ୩ | ୪ | ୫ | ୬ | ୭ | ୮ | ୯ |
---|---|---|---|---|---|---|---|---|---|---|
E. Nagari | ০ | ১ | ২ | ৩ | ৪ | ৫ | ৬ | ৭ | ৮ | ৯ |
Devanagari | ० | १ | २ | ३ | ४ | ५ | ६ | ७ | ८ | ९ |
Gujarati | ૦ | ૧ | ૨ | ૩ | ૪ | ૫ | ૬ | ૭ | ૮ | ૯ |
Gurmukhi | ੦ | ੧ | ੨ | ੩ | ੪ | ੫ | ੬ | ੭ | ੮ | ੯ |
Tibetan | ༠ | ༡ | ༢ | ༣ | ༤ | ༥ | ༦ | ༧ | ༨ | ༩ |
Brahmi | ||||||||||
Telugu | ౦ | ౧ | ౨ | ౩ | ౪ | ౫ | ౬ | ౭ | ౮ | ౯ |
Kannada | ೦ | ೧ | ೨ | ೩ | ೪ | ೫ | ೬ | ೭ | ೮ | ೯ |
Malayalam | ൦ | ൧ | ൨ | ൩ | ൪ | ൫ | ൬ | ൭ | ൮ | ൯ |
Tamil | ೦ | ௧ | ௨ | ௩ | ௪ | ௫ | ௬ | ௭ | ௮ | ௯ |
Burmese | ၀ | ၁ | ၂ | ၃ | ၄ | ၅ | ၆ | ၇ | ၈ | ၉ |
Khmer | ០ | ១ | ២ | ៣ | ៤ | ៥ | ៦ | ៧ | ៨ | ៩ |
Thai | ๐ | ๑ | ๒ | ๓ | ๔ | ๕ | ๖ | ๗ | ๘ | ๙ |
Lao | ໐ | ໑ | ໒ | ໓ | ໔ | ໕ | ໖ | ໗ | ໘ | ໙ |
Balinese | ᭐ | ᭑ | ᭒ | ᭓ | ᭔ | ᭕ | ᭖ | ᭗ | ᭘ | ᭙ |
Javanese | ꧐ | ꧑ | ꧒ | ꧓ | ꧔ | ꧕ | ꧖ | ꧗ | ꧘ | ꧙ |
- AKS primality test: The AKS primality test is a deterministic primality-proving algorithmcreated and published by three Indian Institute of Technology Kanpur computer scientists,Manindra Agrawal, Neeraj Kayal, and Nitin Saxena on August 6, 2002 in a paper titledPRIMES is in P Commenting on the impact of this discovery, Paul Leyland noted: "One reason for the excitement within the mathematical community is not only does this algorithm settle a long-standing problem, it also does so in a brilliantly simple manner. Everyone is now wondering what else has been similarly overlooked".
- Algebraic abbreviations: The mathematician Brahmagupta had begun using abbreviations for unknowns by the 7th century. He employed abbreviations for multiple unknowns occurring in one complex problem. Brahmagupta also used abbreviations for square roots and cube roots.
- Basu's theorem: The Basu's theorem, a result of Debabrata Basu (1955) states that any complete sufficient statistic is independent of any ancillary statistic.
- Brahmagupta–Fibonacci identity, Brahmagupta formula, Brahmagupta matrix, andBrahmagupta theorem: Discovered by the Indian mathematician, Brahmagupta (598–668 CE).
- Chakravala method: The Chakravala method, a cyclic algorithm to solve indeterminatequadratic equations is commonly attributed to Bhāskara II, (c. 1114–1185 CE)although some attribute it to Jayadeva (c. 950 ~ 1000 CE). Jayadeva pointed out that Brahmagupta’s approach to solving equations of this type would yield infinitely large number of solutions, to which he then described a general method of solving such equations.Jayadeva's method was later refined by Bhāskara II in his Bijaganita treatise to be known as the Chakravala method, chakra (derived from cakraṃ चक्रं) meaning 'wheel' in Sanskrit, relevant to the cyclic nature of the algorithm. With reference to the Chakravala method, E. O. Selenuis held that no European performances at the time of Bhāskara, nor much later, came up to its marvellous height of mathematical complexity.
- Hindu number system: The Hindu numeral system was developed in India between the 2000-1500 BC during the Indus Valley Civilization.
- Zero: Indians were the first to use the zero as a symbol and in arithmetic operations, although Babylonians used zero to signify the 'absent'. In those earlier times a blank space was used to denote zero, later when it created confusion a dot was used to denote zero(could be found in Bakhshali manuscript).In 500 AD circa Aryabhata again gave a new symbol for zero(0) with some new rules.
- Infinite series for Sine, Cosine, and arctangent: Madhava of Sangamagrama and his successors at the Kerala school of astronomy and mathematics used geometric methods to derive large sum approximations for sine, cosin, and arttangent. They found a number of special cases of series later derived by Brook Taylor series. They also found the second-order Taylor approximations for these functions, and the third-order Taylor approximation for sine.
- Law of signs in multiplication: The earliest use of notation for negative numbers, as subtrahend, is credited by scholars to the Chinese, dating back to the 2nd century BC. Like the Chinese, the Indians used negative numbers as subtrahend, but were the first to establish the "law of signs" with regards to the multiplication of positive and negative numbers, which did not appear in Chinese texts until 1299. Indian mathematicians were aware of negative numbers by the 7th century, and their role in mathematical problems of debt was understood. Mostly consistent and correct rules for working with negative numbers were formulated, and the diffusion of these rules led the Arab intermediaries to pass it on to Europe.
- Pell's equation, integral solution for: About a thousand years before Pell's time, Indian scholar Brahmagupta (598–668 CE) was able to find integral solutions to vargaprakṛiti (Pell's equation):
where N is a nonsquare integer, in his Brâhma-sphuṭa-siddhânta treatise.
- Pi, infinite series: The infinite series for π is now attributed to Madhava of Sangamagrama (c. 1340-1425) and his Kerala school of astronomy and mathematics. He made use of the series expansion of
to obtain an infinite series expression for π. Their rational approximation of the error for the finite sum of their series are of particular interest. They manipulated the error term to derive a faster converging series for π. They used the improved series to derive a rational expression,
for π correct up to eleven decimal places, i.e.
.
- Ramanujan theta function, Ramanujan prime, Ramanujan summation, Ramanujan graph and Ramanujan's sum: Discovered by the Indian mathematician Srinivasa Ramanujan in the early 20th century.
- Shrikhande graph: Graph invented by the Indian mathematician S.S. Shrikhande in 1959.
- Sign convention: Symbols, signs and mathematical notation were employed in an early form in India by the 6th century when the mathematician-astronomer Aryabhata recommended the use of letters to represent unknown quantities.By the 7th century Brahmagupta had already begun using abbreviations for unknowns, even for multiple unknowns occurring in one complex problem.Brahmagupta also managed to use abbreviations for square roots and cube roots. By the 7th century fractions were written in a manner similar to the modern times, except for the bar separating the numerator and the denominator. A dot symbol for negative numbers was also employed.The Bakhshali Manuscript displays a cross, much like the modern '+' sign, except that it symbolized subtraction when written just after the number affected. The '=' sign for equality did not exist. Indian mathematics was transmitted to the Islamic world where this notation was seldom accepted initially and the scribes continued to write mathematics in full and without symbols.
- Trigonometric functions, adapted from Greek: The trigonometric functions sine and versine were adapted from the full-chord Greek version (to the modern half-chord versions) by the Indian mathematician, Aryabhata, in the late 5th century.
Medicine
- Traditional Medicine: Ayurveda and Siddha are ancient & traditional systems of medicine. Ayurveda dates back to Iron Age India (1st millennium BC) and still practiced today as a form of complementary and alternative medicine. It Means "knowledge for longevity".Siddha medicine is mostly prevalent in South India. Herbs and minerals are basic raw materials of Siddha system.
- Cataract surgery: Cataract surgery was known to the Indian physician Sushruta (6th century BCE). In India, cataract surgery was performed with a special tool called the Jabamukhi Salaka, a curved needle used to loosen the lens and push the cataract out of the field of vision.The eye would later be soaked with warm butter and then bandaged. Though this method was successful, Susruta cautioned that cataract surgery should only be performed when absolutely necessary. Greek philosophers and scientists traveled to India where these surgeries were performed by physicians. The removal of cataract by surgery was also introduced into China from India.
- Inoculation and Variolation: The earliest record of inoculation and variolation for smallpox is found in 8th century India, when Madhav wrote the Nidāna, a 79-chapter book which lists diseases along with their causes, symptoms, and complications. He included a special chapter on smallpox (masūrikā) and described the method of inoculation to protect against smallpox.
- Leprosy: Kearns & Nash (2008) state that the first mention of leprosy is described in the Indian medical treatise Sushruta Samhita (6th century BCE). However, The Oxford Illustrated Companion to Medicine holds that the mention of leprosy, as well as ritualistic cures for it, were described in the Atharva-veda (1500–1200 BCE), written before the Sushruta Samhita.
- Plastic surgery: Plastic surgery was being carried out in India by 2000 BCE. The system of punishment by deforming a miscreant's body may have led to an increase in demand for this practice. The surgeon Sushruta contributed mainly to the field of Plastic and Cataract surgery. The medical works of both Sushruta and Charak were translated into Arabic language during the Abbasid Caliphate (750 CE). These translated Arabic works made their way into Europe via intermidiateries.In Italy the Branca family of Sicily and Gaspare Tagliacozzi of Bologna became familiar with the techniques of Sushruta.
- Lithiasis treatment: The earliest operation for treating lithiasis, or the formations of stones in the body, is also given in the Sushruta Samhita (6th century BCE). The operation involved exposure and going up through the floor of the bladder.
- Visceral leishmaniasis, treatment of: The Indian (Bengali) medical practitioner Upendra Nath Brahmachari (December 19, 1873 - February 6, 1946) was nominated for the Nobel Prize in Physiology or Medicine in 1929 for his discovery of 'ureastibamine (antimonialcompound for treatment of kala azar) and a new disease, post-kalaazar dermal leishmanoid.' Brahmachari's cure for Visceral leishmaniasis was the urea salt of para-amino-phenyl stibnic acid which he called Urea Stibamine. Following the discovery of Urea Stibamine, Visceral leishmaniasis was largely eradicated from the world, except for some underdeveloped regions.
Mining
- Diamond, mining, engraving, and use as tool: Diamonds were first recognized and mined in central India, where significant alluvial deposits of the stone could then be found along the rivers Penner, Krishna and Godavari. It is unclear when diamonds were first mined in India, although estimated to be at least 5,000 years ago. India remained the world's only source of diamonds until the discovery of diamonds in Brazil in 18th century. Golconda served as an important center for diamonds in central India.Diamonds then were exported to other parts of the world, including Europe. Early references to diamonds in India come from Sanskrittexts. The Arthashastra of Kautilya mentions diamond trade in India.Buddhist works dating from the 4th century BCE mention it as a well-known and precious stone but don't mention the details of diamond cutting. Another Indian description written at the beginning of the 3rd century describes strength, regularity, brilliance, ability to scratch metals, and good refractive properties as the desirable qualities of a diamond. A Chinese work from the 3rd century BCE mentions: "Foreigners wear it [diamond] in the belief that it can ward off evil influences". The Chinese, who did not find diamonds in their country, initially did not use diamond as a jewel but used as a "jade cutting knife".
- Zinc, mining and medicinal use: Zinc was first smelted from zinc ore in India. Zinc mines of Zawar, near Udaipur, Rajasthan, were active during early christian era. There are references of medicinal uses of zinc in the Charaka Samhita (300 BCE). TheRasaratna Samuccaya which dates back to the Tantric period (c. 5th - 13th century CE) explains the existence of two types of ores for zinc metal, one of which is ideal for metal extraction while the other is used for medicinal purpose.
Science
- Ammonium nitrite, synthesis in pure form: Prafulla Chandra Roy synthesized NH4NO2 in its pure form, and became the first scientist to have done so. Prior to Ray’s synthesis of Ammonium nitrite it was thought that the compound undergoes rapid thermal decomposition releasing nitrogen and water in the process.
- Ashtekar variables: In theoretical physics, Ashtekar (new) variables, named after Abhay Ashtekar who invented them, represent an unusual way to rewrite the metric on the three-dimensional spatial slices in terms of a SU(2) gauge field and its complementary variable. Ashtekar variables are the key building block of loop quantum gravity.
- Bhatnagar-Mathur Magnetic Interference Balance: Invented jointly by Shanti Swarup Bhatnagar and K.N. Mathur in 1928, the so-called 'Bhatnagar-Mathur Magnetic Interference Balance' was a modern instrument used for measuring various magnetic properties. The first appearance of this instrument in Europe was at a Royal Society exhibition in London, where it was later marketed by British firm Messers Adam Hilger and Co, London.
- Bhabha scattering: In 1935, Indian nuclear physicist Homi J. Bhabha published a paper in theProceedings of the Royal Society, Series A, in which he performed the first calculation to determine the cross section of electron-positron scattering. Electron-positron scattering was later named Bhabha scattering, in honor of his contributions in the field.
- Bose–Einstein statistics, condensate and Boson: On June 4, 1924 the Bengali professor of Physics Satyendra Nath Bose mailed a short manuscript to Albert Einstein entitled Planck's Law and the Light Quantum Hypothes seeking Einstein's influence to get it published after it was rejected by the prestigious journal Philosophical Magazine. The paper introduced what is today called Bose statistics, which showed how it could be used to derive the Planck blackbody spectrum from the assumption that light was made of photons. Einstein, recognizing the importance of the paper translated it into German himself and submitted it on Bose's behalf to the prestigious Zeitschrift für Physik. Einstein later applied Bose's principles on particles with mass and quickly predicted the Bose-Einstein condensate.
- Chandrasekhar limit and Chandrasekhar number: Discovered by and named afterSubrahmanyan Chandrasekhar, who received the Nobel Prize in Physics in 1983 for his work on stellar structure and stellar evolution.[161]
- Galena, applied use in electronics of: Bengali scientist Sir Jagadish Chandra Boseeffectively used Galena crystals for constructing radio receivers. The Galena receivers of Bose were used to receive signals consisting of shortwave, white light and ultraviolet light. In 1904 Bose patented the use of Galena Detector which he called Point Contact Diode using Galena.
- Mahalanobis distance: Introduced in 1936 by the Indian (Bengali) statistician Prasanta Chandra Mahalanobis (June 29, 1893–June 28, 1972), this distance measure, based upon the correlation between variables, is used to identify and analyze differing pattern with respect to one base.
- Mercurous Nitrite: The compound mercurous nitrite was discovered in 1896 by the Bengali chemist Prafulla Chandra Roy, who published his findings in the Journal of Asiatic Society of Bengal.The discovery contributed as a base for significant future research in the field of chemistry.
- Ramachandran plot, Ramachandran map, and Ramachandran angles: The Ramachandran plot and Ramachandran map were developed by Gopalasamudram Narayana Iyer Ramachandran, who published his results in the Journal of Molecular Biology in 1963. He also developed the Ramachandran angles, which serve as a convenient tool for communication, representation, and various kinds of data analysis.
- Raman effect: The Encyclopædia Britannica (2008) reports: "change in the wavelength of light that occurs when a light beam is deflected by molecules. The phenomenon is named for Sir Chandrasekhara Venkata Raman, who discovered it in 1928. When a beam of light traverses a dust-free, transparent sample of a chemical compound, a small fraction of the light emerges in directions other than that of the incident (incoming) beam. Most of this scattered light is of unchanged wavelength. A small part, however, has wavelengths different from that of the incident light; its presence is a result of the Raman effect."
- Raychaudhuri equation: Discovered by the Bengali physicist Amal Kumar Raychaudhuri in 1954. This was a key ingredient of thePenrose-Hawking singularity theorems of general relativity.
- Saha ionization equation: The Saha equation, derived by the Bengali scientist Meghnad Saha (October 6, 1893 – February 16, 1956) in 1920, conceptualizes ionizations in context of stellar atmospheres.
Innovations
- Iron working: Iron works were developed in the Vedic period of India, around the same time as, but independently of, Anatolia and theCaucasus. Archaeological sites in India, such as Malhar, Dadupur, Raja Nala Ka Tila and Lahuradewa in present day Uttar Pradesh show iron implements in the period between 1800 BCE—1200 BCE. Early iron objects found in India can be dated to 1400 BCE by employing the method of radiocarbon dating. Spikes, knives, daggers, arrow-heads, bowls, spoons, saucepans, axes, chisels, tongs, door fittings etc. ranging from 600 BCE to 200 BCE have been discovered from several archaeological sites of India. Some scholars believe that by the early 13th century BC, iron smelting was practiced on a bigger scale in India, suggesting that the date the technology's inception may be placed earlier. In Southern India (present day Mysore) iron appeared as early as 11th to 12th centuries BC; these developments were too early for any significant close contact with the northwest of the country. In the time of Chandragupta IIVikramaditya (375–413 CE), corrosion-resistant iron was used to erect the Iron pillar of Delhi, which has withstood corrosion for over 1,600 years.
No comments:
Post a Comment